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Abstract

We present the spine calculus S!��&> as an e�cient representation for the linear �-calculus �!��&>

which includes intuitionistic functions (!), linear functions (��), additive pairing (&), and additive unit
(>). S!��&> enhances the representation of Church's simply typed �-calculus as abstract B�ohm trees
by enforcing extensionality and by incorporating linear constructs. This approach permits procedures
such as uni�cation to retain the e�cient head access that characterizes �rst-order term languages without
the overhead of performing �-conversions at run time. Potential applications lie in proof search, logic
programming, and logical frameworks based on linear type theories. We de�ne the spine calculus, give
translations of �!��&> into S!��&> and vice-versa, prove their soundness and completeness with respect
to typing and reductions, and show that the spine calculus is strongly normalizing and admits unique
canonical forms.
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1 Introduction

The internal representation of �-calculi, logics and type theories has a direct impact on the e�ciency
of systems for symbolic computation that implement them, theorem provers and logic programming
languages for example. In particular, major gains can be achieved from even small improvements of
procedures that manipulate terms extensively: uni�cation, for instance, is a well-known bottleneck in
the execution time of a logic program. For languages based on �rst-order terms, Prolog for example,
the natural representation of terms supports simple and fast uni�cation algorithms. Indeed, a function
symbol f applied to three arguments a, b and c, written f(a; b; c) in the syntax of Prolog, is encoded as
a record consisting of the head f and the list of its arguments. This is sensible from the point of view
of uni�cation since the head of a terms must be analyzed before its arguments. Systems embedding a
higher-order term language, the logic programming languages Elf [Pfe91, Pfe94] and �Prolog [NM88] for
example, typically represent terms in a way that mimics the traditional de�nition of a �-calculus. Ignoring
common orthogonal optimizations such as the use of DeBruijn indices [dB72] or explicit substitutions
[ACCL91], the above term is parsed and encoded as (((f a) b) c). During uni�cation, three applications
(here represented as juxtaposition) must be traversed before accessing its head, possibly just to discover
that it di�ers from the head of the term being uni�ed. This representation is similarly ine�cient when
normalizing a term: in order to reduce ((�x: �y: �z: f x y z) a b c) to the above term, we need again to go
through three applications before exposing the �rst redex.

Apparently, adopting an internal representation that treats nested applications as in the �rst-order
case (i.e., as a head together with a list of arguments) but permits �-abstraction would improve signif-
icantly the e�ciency of higher-order uni�cation algorithms. This approach, known as the B�ohm tree
representation, has been studied extensively for di�erent purposes [Bar80, Her95]. However, the complex
equational theory that characterizes a �-calculus leads to di�culties in procedures such as uni�cation
and normalization. In particular, �-conversion rules can yield instances of a same function symbol ap-
plied to a di�erent number of arguments. This might even lead to fragmented lists of argument as the
result of �-reduction (e.g. while performing uni�cation) that need to be monitored and compacted regu-
larly. Ultimately, abstract B�ohm trees turn out to be even more complex to deal with than traditional
�-expressions. Instead, no such di�culty emerges with the trivial equational theory of �rst-order terms.

In this paper, we propose a variant of abstract B�ohm trees that supports e�cient head accesses,
but that does not su�er from the drawbacks we just mentioned. This representation of �-terms, that
we call generically a spine calculus, is based on the observation that, in a typed �-calculus, the use
of the troublesome �-conversion rules can be limited to a preprocessing phase that expands terms to
unique �-long forms, which are preserved by �-reduction. Insisting on �-long terms has the advantage of
simplifying the code for procedures such as uni�cation and normalization, of permitting easier informal
descriptions of these algorithms, and more generally of reducing the complexity of studying the meta-
theory of such formalisms. Moreover, �-calculi featuring a unit type and a unit element do not admit
subject reduction unless all terms are �-expanded [JG95]: this means that typing information must be
stored and maintained in otherwise type-free procedures such as uni�cation.

The bene�ts of the spine calculus representation, in conjunction with explicit substitutions, are cur-
rently assessed in a new implementation of the logical framework LF [HHP93] as the higher-order logic
programming language Twelf, the successor of Elf [Pfe91, Pfe94]. LF is based on the type theory ��, a
re�nement of Church's simply-typed �-calculus �! with dependent types. In this paper, we will instead
focus on the simply-typed linear �-calculus �!��&>, which extends �! with the type constructors ��,
& and >, derived from the identically denoted connectives of linear logic [Gir87]. We will de�ne the cor-
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responding spine calculus S!��&>, present translations between the two, and prove the meta-theoretical
properties of S!��&> that make it adequate as an internal representation language for �!��&>. Notice
that our analysis applies to any sublanguage of �!��&>, in particular to �! and its extension with
extensional products and a unit type, �!&>; moreover, it can easily be extended to the treatment of
dependent types.

A similar proposal for term representation was already mentioned in passing by Howard in his seminal
paper [How69]. The normal forms of the spine calculus also arise as a term assignment language for
uniform proofs, which form the basis for abstract logic programming languages and is based on a much
richer set of connectives [MNPS91]. A thorough investigation of a related calculus on the �! fragment
has been conducted by Herbelin [Her95]. Schwichtenberg [Sch97] studies a version of the intuitionistic
spine representation and ordinary �-calculi in a single system which incorporates permutative conversions,
instead of the wholesale translation investigated here (which is closer to an e�cient implementation).

�!��&> corresponds, via a natural extension of the Curry-Howard isomorphism, to the (!��&>)
fragment of intuitionistic linear logic, which constitutes the propositional core of the logic programming
language Lolli [HM94] and of the linear logical framework LLF [Cer96, CP96]. �!��&> is also the
simply-typed variant of the term language of LLF . Its theoretical relevance derives from the fact that
it is the biggest linear �-calculus that admits unique long ��-normal forms. �!��&> shares similarities
with the calculus proposed in [Bar96] and with the term language of the system RLF [IP96].

The implementation of a language based on a linear type theories such as LLF and RLF raises
new challenges that do not emerge neither for intuitionistic languages such as Elf [Pfe94], nor in linear
logic programming languages featuring plain intuitionistic terms such as Lolli [HM94] or Forum [Mil94].
In particular, the implementation of formalisms based on a linear �-calculus must perform higher-order
uni�cation on linear terms in order to instantiate existential variables [CP97]. The spine calculus S!��&>

was designed as an e�cient representation for uni�cation and normalization over the linear �-expressions
that can appear in an LLF speci�cation.

The adoption of linear term languages in LLF and RLF has been motivated by a number of appli-
cations. Linear terms provide a statically checkable notation for natural deductions [IP96] or sequent
derivations [CP96] in substructural logics. In the realm of programming languages, linear terms naturally
model computations in imperative languages [CP96] or sequences of moves in games [Cer96]. When we
want to specify, manipulate, or reason about such objects (which is common in logic and the theory
of programming languages), then internal linearity constraints are critical in practice (see, for exam-
ple, the �rst formalizations of cut-elimination in linear logic and type preservation for Mini-ML with
references [CP96]).

The principal contribution of this work is the de�nition of spine calculi (1) as a new representation
technique for generic �-calculi that permits both simple meta-reasoning and e�cient implementations,
and (2) as a term assignment system for the logic programming notion of uniform provability.

Our presentation is organized as follows. In Section 2, we de�ne �!��&> and present its main
properties. We introduce the syntax and the typing and reduction semantics of S!��&> in Section 3.
In Section 4, we give translations from the traditional presentation to the spine calculus and vice-versa
and show that they are sound and complete with respect to the typing and reduction semantics of both
languages. In Section 5, we state and prove the major properties of S!��&>. Further remarks are made
in Section 6. Finally, Section 7 summarizes the work done, discusses applications and hints at future
development. In order to facilitate our description, we must assume the reader familiar with linear logic
[Gir87].

2 The Linear Simply-Typed Lambda Calculus �
!��&>

In this section, we introduce the linear simply-typed �-calculus �!��&>, which augments Church's simply-
typed �-calculus �! [Chu40] with a number of operators from linear logic [Gir87]. More precisely, we
give its syntax in Section 2.1, present its typing semantics in Section 2.2 and its reduction semantics in
Section 2.3. �!��&> is the simply-typed variant of the linear type theory ����&>, thoroughly analyzed
in [Cer96]. We refer the interested reader to this work for the proofs of the properties of �!��&> stated
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Pre�canonical terms

�;� `� M # a
l� atm

�;� `� M * a

l� unit

�;� `� hi * >

�;� `� M * A �;� `� N * B
l� pair

�;� `� hM;Ni * A&B

�;�; x :A `� M * B
l� llam

�;� `� ^�x :A:M * A��B

�; x :A;� `� M * B
l� ilam

�;� `� �x :A:M * A! B
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Pre�atomic terms

�;� `� M * A
l� redex

�;� `� M # A

l� con

�; � `�;c:A c # A
l� lvar

�; x :A `� x # A
l� ivar

�; x :A; � `� x # A

(No rule for >)
�;� `� M # A&B

l� fst

�;� `� fstM # A

�;� `� M # A&B
l� snd

�;� `� sndM # B

�;�0

`� M # A��B �;�00

`� N * A
l� lapp

�;�0

;�00

`� M^N # B

�;� `� M # A! B �; � `� N * A
l� iapp

�;� `� M N # B

Figure 1: Typing for �-long �!��&> Terms

in this section.

2.1 Syntax

The linear simply-typed �-calculus �!��&> extends Church's �! with the three type constructors ��
(multiplicative arrow), & (additive product) and > (additive unit), derived from the identically denoted
connectives of linear logic. The language of terms is augmented accordingly with constructors and
destructors, devised from the natural deduction style inference rules for these connectives. Although not
strictly necessary at this level of the description, the inclusion of intuitionistic constants is convenient in
developments of this work that go beyond the scope of this paper. We present the resulting grammar in
a tabular format to relate each type constructor (left) to the corresponding term operators (center), with
constructors preceding destructors. Clearly, constants and variables can have any type.

Types: A ::= a Terms: M ::= c j x

j A1 ! A2 j �x :A:M j M1 M2 (intuitionistic functions)

j A1��A2 j �̂x :A:M j M1^M2 (linear functions)
j A1&A2 j hM1;M2i j fstM j sndM (additive pairs)
j > j hi (additive unit)

Here x, c and a range over variables, constants and base types, respectively. In addition to the names
displayed above, we will often use N and B for terms and types, respectively.

The notions of free and bound variables are adapted from �!. As usual, we identify terms that di�er
only in the name of their bound variables and write [M=x]N for the capture-avoiding substitution of M
for x in the term N .

2.2 Typing Semantics

As usual, we rely on signatures and contexts to assign types to constants and free variables, respectively.

Signatures: � ::= � j �; c : A Contexts: � ::= � j �; x : A
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We will also use the letter �, possibly subscripted, to indicate a context. Contexts and signatures
are treated as multisets; we promote \;" to denote their union and omit writing \�" when unnecessary.
Finally, we require variables and constants to be declared at most once in a context and in a signature,
respectively.

Operating solely on well-typed terms in �-long form is particularly convenient when implementing
operations such as uni�cation since it strongly restricts the structure that a term of a given type can
assume. Instead, untyped �-conversion rules are often included in the reduction semantics of a �-calculus
in order to focus on �-long representatives when needed. In the presence of a unit element, hi in �!��&>,
this approach is unsound. We cleanly realize the above desideratum by distinguishing a pre-canonical
typing judgment, which validates precisely the well-typed terms of �!��&> in �-long form (pre-canonical
terms), from a pre-atomic judgment, which handles intermediate stages of their construction (pre-atomic

terms). These judgments are respectively denoted as follows:

�;� `� M * A M is a pre-canonical term of type A in �;� and �
�;� `� M # A M is a pre-atomic term of type A in �;� and �

where � and � are called the intuitionistic and the linear context, respectively. Whenever a property
holds uniformly for the pre-canonical and pre-atomic judgments above, we will write �;� `� M *# A

and then refer to the term M and the type A if needed. Moreover, if two or more such expressions
occur in a statement, we assume that the arrows of the actual judgments match, unless explicitly stated
otherwise.

The rules displayed in the upper part of Figure 1 validate pre-canonical termsM by deriving judgments
of the form �;� `� M * A. Rules l� unit, l� pair, l� llam and l� ilam allow the construction of terms
of the form hi, hM1;M2i, �̂x :A:M , and �x :A:M , respectively. The manner they handle their context
is familiar from linear logic. Notice in particular that l� unit is applicable with any linear context
and that the premisses of rule l� pair share the same context, which also appears in its conclusion.
Rules l� llam and l� ilam di�er only by the nature of the assumption they add to the context in their
premiss: linear in the case of the former, intuitionistic for the latter. The remaining rule de�ning the
pre-canonical judgment, l� atm, is particularly interesting since it is the reason why all terms derivable
in the pre-canonical system are in �-long form. Notice that this rule can be applied only at base types.

The rules de�ning the pre-atomic judgment, �;� `� M # A, are displayed in the lower part of
Figure 1. They validate constants (rule l� con) and linear and intuitionistic variables (rules l� lvar and
l� ivar, respectively). They also allow the formation of the terms fstM , sndM , M^N and M N (rules
l� fst, l� snd, l� lapp and l� iapp, respectively). The role played by linear assumptions in �!��&> is
particularly evident in these rules. Indeed, an axiom rule (l� con, l� lvar and l� ivar) can be applied
only if the linear part of its context is empty, or contains just the variable to be validated, with the proper
type. Linearity appears also in the elimination rule for ��, where the linear context in the conclusion

of rule l� lapp is split and distributed among its premisses. Observe also that the linear context of the
argument part of an intuitionistic application, in rule l� iapp, is constrained to be empty. The presence
of rule l� redex accounts for the possibility of validating terms containing �-redices, as de�ned below.
If we remove it, only �-long �-normal (or more succinctly canonical) terms can be derived.

This formulation of the typing semantics of �!��&> is the simply-typed variant of the pre-canonical
system which de�nes the semantics of the linear type theory underlying LLF [Cer96, CP96]. We direct
the interested reader to these references for the proofs of the statements in this section.

If we ignore the terms and the distinction between the pre-canonical and the pre-atomic judgments,
the rules in Figure 1 correspond to the speci�cation of the familiar inference rules for the (!��&>)
fragment of intuitionistic linear logic, ILL!��&> [HM94], presented in a natural deduction style. It is
easy to prove the equivalence to the usual sequent formulation. �!��&> and ILL!��&> are related by
a form of the Curry-Howard isomorphism: the terms that appear on the left of the types in the above
judgments record the structure of a natural deduction proof for the corresponding linear formulas. Note
that the interactions of rules � unit and � lapp can 
atten distinct proofs to the same �!��&> term.

Extensionality, i.e., the property of validating only �-long terms, contributes to achieving the simple
and elegant formulation of the pre-uni�cation algorithm for �!��&> described in [CP97]. More im-
portantly, this property and the subject reduction lemma below account for the possibility of omitting
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Congruences

M �! M
0

lr pair1

hM;Ni �! hM
0

;Ni

N �! N
0

lr pair2

hM;Ni �! hM;N
0

i

M �! M
0

lr fst

fstM �! fstM
0

M �! M
0

lr snd

sndM �! sndM
0

M �! M
0

lr llam

^�x :A:M �! ^�x :A:M 0

M �! M
0

lr lapp1

M^N �! M
0

^N

N �! N
0

lr lapp2

M^N �! M^N
0

M �! M
0

lr ilam

�x :A:M �! �x :A:M 0

M �! M
0

lr iapp1

M N �! M
0

N

N �! N
0

lr iapp2

M N �! M N
0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
��reductions

lr beta fst

fst hM;Ni �! M
lr beta snd

snd hM;Ni �! N

lr beta lin

(^�x :A:M)^N �! [N=x]M
lr beta int

(�x :A:M)N �! [N=x]M

Figure 2: Reduction Semantics for �!��&>

type information in an implementation of this procedure, an essential e�ciency gain. Extensionality is
formalized in the following lemma, which proof can be easily adapted from [Cer96].

Lemma 2.1 (Extensionality)

i . If �;� `� M * a, then M is one of c; x; fstN; sndN; N1^N2; N1 N2;

ii . If �;� `� M * >, then M = hi;

iii . If �;� `� M * A&B, then M = hN1; N2i;

iv. If �;� `� M * A��B, then M = �̂x :A:N ;

v. If �;� `� M * A! B, then M = �x :A:N . 2

2.3 Reduction Semantics

The reduction semantics of �!��&> is given by the congruence relation on terms �! based on the
following �-reduction rules:

�fst : fst hM;N i �!M �lapp : (�̂x :A:M ) N̂ �! [N=x]M

�snd : snd hM;N i �!N �iapp : (�x :A:M )N �! [N=x]M:

The complete de�nition of �! is displayed in Figure 2. If M �! N is derivable, then N di�ers from
M by the reduction of exactly one redex. We denote its re
exive and transitive closure as �!�, and use
� for the corresponding equivalence relation. It is easy to show that the rules obtained from Figure 2
by replacing �! with �!� (or even with �) are admissible. We adopt the standard terminology and
call a term M that does not contain �-redices normal, or �-normal. When emphasizing the fact that our
well-typed terms are �-long, we will instead use the term canonical.

Similarly to �!, �!��&> enjoys a number of highly desirable properties [Cer96]. In particular,
con
uence and the Church-Rosser property hold for this language, as expressed by the following lemma:

Theorem 2.2 (Church-Rosser)

Con
uence: If M �!� M 0 and M �!� M 00, then there is a term N such that

M 0 �!� N and M 00 �!� N .

Church-Rosser: If M 0 �M 00, then there is a term N such that M 0 �!� N and M 00 �!� N . 2
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Moreover, �!��&> enjoys the following substitution principle (also known as transitivity lemma),
that, among many interpretations, permits viewing variables as unspeci�ed hypothetical derivations to be
instantiated with actual derivations. Notice the di�erent treatment of intuitionistic and linear variables.

Lemma 2.3 (Transitivity)

i . If �;�; x :B `� M *# A and �;�0 `� N * B, then �;�;�0 `� [N=x]M *# A.

ii . If �; x :B;� `� M *# A and �; � `� N * B, then �;� `� [N=x]M *# A. 2

An important computational property of a typed �-calculus is subject reduction: it states that reduc-
tions do not alter the typability (and the type) of a term. The lemma below also implies that �-reductions
do not interfere with extensionality: reducing a redex rewrites �-long terms to �-long terms.

Lemma 2.4 (Subject reduction)

If �;� `� M *# A and M �!� N , then �;� `� N *# A. 2

Our calculus also enjoys strong normalization, i.e., a well-typed term cannot undergo an in�nite
sequence of �-reductions. Said in another way, a normal form will eventually be reached no matter which
�-redex we choose to reduce �rst.

Theorem 2.5 (Strong normalization)

If �;� `� M *# A, then M is strongly normalizing. 2

Finally, well-typed terms have unique normal forms, up to the renaming of bound variables. Since
every extension of �!��&> (for example with 
 and multiplicative pairs) introduces commutative con-
versions, this language is the largest linear �-calculus for which strong normalization holds and yields
unique normal forms.

Corollary 2.6 (Uniqueness of normal forms)

If �;� `� M *# A, then there is a unique normal term N such that M �!� N . 2

We write Can(M ) for the canonical form of the termM , de�ned as the �-expansion of its �-normal form.
A calculus that validates only canonical terms can easily be obtained from the system in Figure 1 by
removing rule l� redex.

To achieve better e�ciency in an implementation of this calculus, we sometimes refer to the weak

head-normal form of a term M , written M , that di�ers from Can(M ) for the possible presence of redices
in the arguments of applications. Notice that x corresponds to the �-long form of the variable x.

3 The Spine Calculus S
!��&>

In this section, we present an alternative formulation of �!��&>, the spine calculus S!��&>, that we
suspect permits achieving more e�cient implementation of critical procedures such as uni�cation [CP97].
We describe the syntax, typing and reduction semantics of S!��&> in Sections 3.1, 3.2 and 3.3, respec-
tively. We will formally state the equivalence of �!��&> and S!��&> in Section 4 and prove major
properties of the spine calculus in Section 5.
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3.1 Syntax

Uni�cation algorithms base a number of choices on the nature of the heads of the terms to be uni�ed.
The head is immediately available in the �rst-order case, and still discernible in �! since every �-long
normal or weak head-normal term has the form

�x1 :A1: : : :�xn :An: t M1 : : :Mm

where the head t is a constant or a variable and (t M1 : : :Mm) has base type. The usual parentheses
saving conventions hide the fact that t is indeed deeply buried in the sequence of application and therefore
not immediately accessible. A similar notational trick is not achievable in �!��&> since on the one hand
a term of composite type can have several heads (e.g. hc1^x; c2^xi), possibly none (e.g. hi), and on the
other hand destructors can be interleaved arbitrarily in a term of base type (e.g. fst ((snd c)^x y)).

The spine calculus S!��&> permits recovering both e�cient head accesses and notational convenience.
Every atomic term M of �!��&> is written in this presentation as a root H � S, where H corresponds
to the head of M and the spine S collects the sequence of destructors applied to it. For example,
M = (t M1 : : :Mm) is written U = t � (U1; : : :Um;nil) in this language, where \;" represents application,
nil identi�es the end of the spine, and Ui is the translation of Mi. Application and \;" have opposite
associativity so that M1 is the innermost subterm of M while U1 is outermost in the spine of U . This
approach was suggested by an empirical study of higher-order logic programs based on �! terms [MP92]
and is reminiscent of the notion of abstract B�ohm trees [Bar80, Her95]; its practical merits in our setting
are currently assessed in an experimental implementationof a uni�cation algorithmfor LLF [Cer96, CP96]
and a complete system for an extension of LF . The following grammar describes the syntax of S!��&>:
we write constructors as in �!��&>, but use new symbols to distinguish a spine operator from the
corresponding term destructor.

Terms: U ::= H � S Spines: S ::= nil Heads: H ::= c j x j U

j �x :A:U j U ;S

j �̂x :A:U j U ;̂S
j hU1; U2i j �1S j �2S

j hi

We adopt the same syntactic conventions as in �!��&> and often write V for terms in S!��&>. Generic
terms are allowed as heads in order to construct �-redices. Indeed, normal S!��&> terms have either a
constant or a variable as their heads.

3.2 Typing Semantics

The typing judgments for terms and spines are denoted as follows:

�;� `� U : A U is a term of type A in �;� and �
�;� `� S : A > a S is a spine from heads of type A to terms of type a in �;� and �

The latter expresses the fact that given a head H of type A, the root H � S has type a. Notice that the
target type of a well-typed spine is a base type. This has the desirable e�ect of permitting only �-long
terms to be derivable in this calculus: allowing arbitrary types on the right-hand side of the spine typing
judgment corresponds to dropping this property. Abstract B�ohm trees [Bar80, Her95] are obtained in
this manner.

The mutual de�nition of the two typing judgments of S!��&> is given in Figure 3. The rules
concerning terms resemble very closely the de�nition of the pre-canonical judgment of �!��&>, except
for the treatment of heads. The rules for the spine typing judgment are instead related to pre-atomic
typing in �!��&>. The opposite associativity that characterizes the spine calculus with respect to the
more traditional formulation is re
ected in the manner types are managed in the lower part of Figure 3.

We conclude this section by showing that, as for �!��&>, the typing relation of S!��&> validates
only terms in �-long form, as expressed by the lemma below.
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Terms

�;�0

`� U : A �;�00

`� S : A > a
lS redex

�;�
0

;�
00

`� U � S : a

�;� `�;c:A S : A > a
lS con

�;� `�;c:A c � S : a

�;� `� S : A > a
lS lvar

�;�; x :A `� x � S : a

�; x :A;� `� S : A > a
lS ivar

�; x :A;� `� x � S : a

lS unit

�;� `� hi : >

�;� `� U1 : A1 �;� `� U2 : A2

lS pair

�;� `� hU1; U2i : A1&A2

�;�; x :A `� U : B
lS llam

�;� `� ^�x :A:U : A��B

�; x :A;� `� U : B
lS ilam

�;� `� �x :A: U : A! B
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Spines

lS nil

�; � `� nil : a > a

(No spine rule for >)
�;� `� S : A1 > a

lS fst

�;� `� �1S : A1&A2 > a

�;� `� S : A2 > a
lS snd

�;� `� �2S : A1&A2 > a

�;�0

`� U : A �;�00

`� S : B > a
lS lapp

�;�0

;�00

`� U ;̂S : A��B > a

�; � `� U : B �;� `� S : B > a
lS iapp

�;� `� U ;S : A! B > a

Figure 3: Typing for �-long S!��&> Terms

Lemma 3.1 (Extensionality)

i . If �;� `� U : a, then U = H � S;

ii . If �;� `� U : >, then U = hi;

iii . If �;� `� U : A&B, then U = hV1; V2i;

iv. If �;� `� U : A��B, then U = �̂x :A: V ;

v. If �;� `� U : A! B, then U = �x :A: V .

Proof.

By inversion on the given derivations. 2X

Notice how the structure of S!��&> terms, in particular the availability of roots, permits a leaner
statement of extensionality as compared with the traditional formulation in Lemma 2.1.

3.3 Reduction Semantics

We will now concentrate on the reduction semantics of S!��&>. The natural translation of the �-rules
of �!��&> (right) yields the �-reductions displayed on the left-hand side of the following table:

hU; V i � (�1S)
S
�!� U � S fst hM;N i �! M

hU; V i � (�2S)
S
�!� V � S snd hM;N i �! N

(�̂x :A:U ) � (V ;̂S)
S
�!� [V=x]U � S (�̂x :A:M ) N̂ �! [N=x]M

(�x :A:U ) � (V ;S)
S
�!� [V=x]U � S (�x :A:M )N �! [N=x]M

The trailing spine in the reductions for S!��&> is a consequence of the fact that this language reverses the
nesting order of �!��&> destructors. We call the expression patterns on the left-hand side of the arrow

�-redices. We write
S
�!� for the congruence relation based on these rules and overload this notation to
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Congruences terms

S
S
�! S

0

Sr con

c � S
S
�! c � S

0

S
S
�! S

0

Sr var

x � S
S
�! x � S

0

U
S
�! U

0

Sr redex1

U � S
S
�! U

0

� S

S
S
�! S

0

Sr redex2

U � S
S
�! U � S

0

U
S
�! U

0

Sr pair1

hU;V i
S
�! hU 0; V i

V
S
�! V

0

Sr pair2

hU;V i
S
�! hU;V 0

i

U
S
�! U

0

Sr llam

^�x :A:U
S
�! ^�x :A:U 0

U
S
�! U

0

Sr ilam

�x :A:U
S
�! �x :A: U 0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
spines

S
S
�! S

0

Sr fst

�1S
S
�! �1S

0

S
S
�! S

0

Sr snd

�2S
S
�! �2S

0

U
S
�! U

0

Sr lapp1

U ;̂S
S
�! U

0 ;̂S

S
S
�! S

0

Sr lapp2

U ;̂S
S
�! U ;̂S0

U
S
�! U

0

Sr iapp1

U ;S
S
�! U

0;S

S
S
�! S

0

Sr iapp2

U ;S
S
�! U ;S0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
nil�reduction

Sr nil

(H � S) � nil
S
�! H � S

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
��reductions

Sr beta fst

hU;V i � (�1S)
S
�! U � S

Sr beta snd

hU;V i � (�2S)
S
�! V � S

Sr beta lin

(^�x :A:U) � V ;̂S
S
�! [V=x]U � S

Sr beta int

(�x :A:U) � V ;S
S
�! [V=x]U � S

Figure 4: Reduction Semantics for S!��&>

apply to both terms and spines. We denote the re
exive and transitive closure of this relation as
S
�!�

�.

Formal inference rules for
S
�!� are obtained by considering the two upper and the lower segments of

Figure 4.

The structure of roots in the spine calculus makes one more reduction rule necessary, namely:

(H � S) � nil
S
�!nil H � S

We call this rule nil-reduction, its left-hand side a nil-redex and write
S
�!nil for the congruence relation,

for both terms and spines, built on top of it. It is formally de�ned by the topmost three parts of Figure 4.

We denote its re
exive and transitive closure as
S
�!�

nil
and the corresponding equivalence relation as

S
�nil.

We write
S
�! for the union of

S
�!� and

S
�!nil. It is the congruence relation obtained by allowing

the use of both �-reductions and the nil-reduction. This is the relation we will use as the basis of

the reduction semantics of S!��&>. We reserve
S
�!� for its re
exive and transitive closure, and

S
�

for the corresponding equivalence relation. The complete de�nition of
S
�! is displayed in Figure 4. As

for �!��&>, the rules obtained from this �gure by replacing
S
�! with

S
�!� are admissible. This fact
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will enable us to lift every result below mentioning
S
�! (possibly as

S
�!� or

S
�!nil) to corresponding

properties of
S
�!� (

S
�!�

� or
S
�!�

nil
, respectively).

Finally, a S!��&> term or spine that does not contain any �- or nil-redex is called normal. We
use instead the adjective canonical when this object is also in �-long form. By the above extensionality
property, every well-typed normal term is canonical.

nil-reduction appears as an omnipresent nuisance when investigating the meta-theory of S!��&>

in Section 5. Fortunately, we can isolate the main properties of
S
�!nil and, by the very nature of the

nil-reduction, achieve simple proofs of these results. We will therefore dedicate the remainder of this
section to this task.

The analysis of the interplay between typing and nil-reduction reveals that this relation enjoys the
subject reduction property, as stated by the following lemma. Here and below, we abbreviate the phrases
\the judgment J has derivation J " and \there is a derivation J of the judgment J" as J :: J .

Lemma 3.2 (nil-reduction preserves typing)

i . If U :: �;� `� U : A and R :: U
S
�!nil U 0, then U 0 :: �;� `� U 0 : A.

ii . If S :: �;� `� S : A > a and R :: S
S
�!nil S0, then S0 :: �;� `� S0 : A > a.

Proof.

By induction on the structure of R and inversion on U and S. 2X

A further property, that we will use in Section 5 is that the use of nil-reduction in the reverse direction,
i.e., as an expansion rule, preserves typing too.

Lemma 3.3 (nil-expansion preserves typing)

i . If R :: U
S
�!nil U 0 and U 0 :: �;� `� U 0 : A, then U :: �;� `� U : A.

ii . If R :: S
S
�!nil S0 and S0 :: �;� `� S0 : A > a, then S :: �;� `� S : A > a.

Proof.

By induction on the structure of R and inversion on U 0 and S0. 2X

We now concentrate on the properties of S!��&> and
S
�!nil as a rewriting system. An application

of rule Sr nil reduces a nil-redex by eliminating a trailing nil spine. Therefore, only as many nil-
reductions can be chained starting from a given term as the number of nil-redices present in it. This
implies that any sequence of nil-reductions is terminating in S!��&>.

Lemma 3.4 (Strong nil-normalization)

Every maximal sequence of nil-reductions starting at a term U (spine S) is �nite.

Proof.

A formal proof goes by induction on the structure of U and S. 2X

This property entails also that, given a term U , there is only a �nite number of terms V such that

U
S
�!�

nil
V is derivable. Therefore checking whether U

S
�!�

nil
V has a derivation is decidable. Clearly,

these results hold also for spines.

If the nil-reduction rule is applicable in two positions in a term, the resulting terms can be reported to
a common reduct by a further application (unless they are already identical). This property is formalized
in the following local con
uence lemma, that applies equally to terms and spines.
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Lemma 3.5 (Local con
uence)

If R0 :: U
S
�!nil U 0 and R00 :: U

S
�!nil U 00, then either U 0 = U 00 or there is a term V such that

R� :: U 0 S
�!nil V and R�� :: U 00 S

�!nil V , and similarly for spines.

Proof.

By simultaneous induction on the structure of R0 and R00. 2X

Well-known results in term rewriting theory [DJ90] allow lifting this property, in the presence of

termination, to the re
exive and transitive closure of
S
�!nil.

Corollary 3.6 (Con
uence)

If R0 :: U
S
�!�

nil
U 0 and R00 :: U

S
�!�

nil
U 00, then there is a term V such that R� :: U 0 S

�!�
nil

V

and R�� :: U 00 S
�!�

nil
V , and similarly for spines. 2

We say that a term or a spine is in nil-normal form if it does not contain any nil-redex. Since
S
�!nil

eliminates a nil-redex, an exhaustive application to a term U (a spine S) yields a nil-normal term (spine,
respectively). A combination of the results above ensures that a nil-normal form is eventually found (by
the termination lemma), and that it is unique (by con
uence). This is the essence of the uniqueness
lemma below.

Lemma 3.7 (Uniqueness of nil-normal forms)

For every term U (spine S) there is a unique nil-normal term V (spine S0) such that U
S
�!�

nil
V

(S
S
�!�

nil
S0, respectively).

Proof.

Since
S
�!�

nil
is terminating, there is at least one term V such that U

S
�!�

nil
V is derivable and such

that V does not admit further nil-reductions. Then V cannot contain any nil-redex.

Assume that there are two such term, V 0 and V 00 say. Then by con
uence, they must have a common
nil-reduct V . However, since neither V 0 nor V 00 admit nil-reductions, it must be the case that V 0 =
V 00 = V .

A similar analysis applies to spines. 2X

We denote the nil-normal form of a term U and a spine S as NFnil(U ) and NFnil(S), respectively.

Furthermore, we write S!��&>
nil

for the sublanguage of S!��&> that consists only of nil-normal terms.

In Section 5, we will take advantage of the following technical result that states that substitution
preserves nil-reducibility.

Lemma 3.8 (Substitution)

i . If R :: U
S
�!�

nil
U 0 and RV :: V

S
�!�

nil
V 0, then R0 :: [V=x]U

S
�!�

nil
[V 0=x]U 0.

ii . If R :: S
S
�!�

nil
S0 and RV :: V

S
�!�

nil
V 0, then R0 :: [V=x]S

S
�!�

nil
[V 0=x]S0.

Proof.

By induction on the structure of R. 2X

We conclude this section by analyzing how nil-reduction interacts with the �-reduction rules of
S!��&>. The interesting result is that nil-reductions can always be pushed past �-reductions, as ex-
pressed by the following lemma. We render this property graphically by means of the diagram on the
right: derivations given as assumptions are represented with full lines, while derivations whose existence
needs to be shown are displayed using dotted edges. For typographic reasons, we use a double arrow
rather than a star (�) in order to denote the re
exive and transitive closure of a relation

11



Lemma 3.9 (Postponing nil-reductions)

If Rnil :: U
S
�!nil V 0 and R� :: V 0 S

�!� V , then there is a term U 0

such that R0

� :: U
S
�!� U 0 and R0

nil
:: U 0 S

�!�
nil

V , and similarly for spines.

Proof.

By induction on the structure of Rnil. 2X

U V 0

U 0 V

-
nil

-S

?
S

�

...........-S...........-
nil

-

...........?
S

�

Notice that postponing a nil-reduction can lead to any number of instances of it, possibly zero. They
should all be reduced to have the above diagram commute. Indeed, on the one hand, the application
of intuitionistic �-reduction (rule Sr beta int) can result in several copies of an argument containing a
nil-redex, possibly none. On the other hand, rules Sr beta fst and Sr beta snd can project away a
term containing a nil-redex.

Observe that the dual property of pushing �-reductions past nil-reductions does not hold in general.
Consider for example the following sequence of reductions:

hc � nil; d � nili � (�1nil)
S
�!� (c � nil) � nil

S
�!nil c � nil

The two reduction cannot be interchanged since the original term, fst hc; di in the traditional notation,
does not contain a nil-redex. The problem is that, while performing a nil-reduction does not introduce
�-redices, carrying out a �-reduction can create new nil-redices.

4 Relationship between �!��&> and S!��&>

There exists a structural translation of terms in �!��&> to terms in S!��&> and vice versa. As we will
see in this section, this translation preserves typing and �-reductions, so that �!��&> and S!��&> share
the same properties on well-typed (�-long) terms, and are therefore equivalent for practical purposes.
However, S!��&> is structurally richer than �!��&> in the sense that it permits terms containing
nil-redices, which are indistinguishable from their nil-normal form in the more traditional formulation.
Therefore, we will treat the two directions of the translation separately. In Section 4.1 we will introduce
a mapping of �!��&> to S!��&> and prove its soundness with respect to typing. In Section 4.2, we will
instead develop the machinery to prove the soundness of this translation with respect to the reduction
semantics of the two languages. We introduce the reverse translation in Section 4.3 and establish its
soundness with respect to reduction in Section 4.4. Sections 4.2 and 4.4 are rather technical; the casual
reader should be able to skip them and still follow the overall discussion.

4.1 �S: A Translation from �
!��&> to S!��&>

The translation from �!��&> to S!��&>, abbreviated �S, maps the uniform notion of �!��&> term to
the roots, terms and spines of S!��&>, depending on the structure of the original term. �S is speci�ed
by means of the following judgments:

M �S

�! U M translates to U

M nS �S

�! U M translates to U , given spine S

The rules de�ning them are displayed in Figure 5. When translating a pre-atomic �!��&> term M by
means of the second judgment, the spine S acts as an accumulator for the destructors appearing in M .
This indirection is needed to cope with the opposite associativity of spines in S!��&> and destructor
nesting in �!��&>. The side conditions in rules �S atm and �S redex specify the admissible structure
of their �rst argument (M ); they could be avoided by specializing these rules to take into account the
di�erent possibilities they encompass. Notice that, for each of the two judgments of �S, the structure of
the �rst argument determines uniquely which rule can be used in the translation process.
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Pre�canonical terms

M n nil
�S

�! H � S
�S atm

M
�S

�! H � S
(for M = c; x; fstM 0; sndM 0; M 0

^M 00; M 0 M 00)

�S unit

hi
�S

�! hi

M1

�S

�! U1 M2

�S

�! U2

�S pair

hM1;M2i
�S

�! hU1; U2i

M
�S

�! U
�S llam

^�x :A:M �S

�! ^�x :A:U

M
�S

�! U
�S ilam

�x :A:M �S

�! �x :A: U
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Pre�atomic terms

M
�S

�! U
�S redex

M nS
�S

�! U � S
(for M = hM 0;M 00

i; ^�x :A:M 0; �x :A:M 0)

�S con

c nS
�S

�! c � S
�S var

x n S
�S

�! x � S

M n �1S
�S

�! V
�S fst

fstM n S
�S

�! V

M n�2S
�S

�! V
�S snd

sndM n S
�S

�! V

N
�S

�! U M nU ;̂S �S

�! V
�S lapp

M^N n S
�S

�! V

N
�S

�! U M nU ; S �S

�! V
�S iapp

M N nS
�S

�! V

Figure 5: Translation of �!��&> into S!��&>

We can immediately prove the faithfulness of this translation with respect to typing. This result
expresses the adequacy of the system in Figure 3 as an emulation of the typing semantics of �!��&>.
We will take advantage of this fact below.

Theorem 4.1 (Soundness of �S for typing)

i . If C :: �;� `� M * A, then D ::M �S

�! U and U :: �;� `� U : A;

ii . if A :: �;�1 `� M # A and S :: �;�2 `� S : A > a, then D ::M nS �S

�! V and

U :: �;�1;�2 `� V : a.

Proof.

By simultaneous induction on the structure of C and A. The cases concerning rules l� atm and
l� redex require some care in order to satisfy the side conditions in rules �S atm and �S redex,
respectively. 2X

Notice that this statement implies not only that types are preserved during the translation process,
but also, by virtue of extensionality, that �-long objects of �!��&> are mapped to �-long terms in the
spine calculus.

We will obtain an indirect proof of the completeness of �S with respect to typing in Section 4.3. As
a preparatory step, we dedicate the remainder of this section to getting some insight in the manner �S
operates.

We �rst show that �S is a function, i.e., that every term has a unique translation. It is interesting to
observe that it is not de�ned over all of �!��&>. For example, the term fst hi has no translation since
no rule can derive a judgment of the form hi nS

�S

�! U , whichever S and U are. Although it su�ces to
add the possibility of having M = hi in the side condition of rule �S redex to eliminate this apparent
anomaly, we are not interested in such a term since it is ill-typed. Instead, we �x the domain of �S to
be the set of typable (i.e., either pre-canonical or pre-atomic) terms in �!��&>. The following lemma
establishes the functionality of the translation.
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�!��&> S!��&>

S!��&>
nil

�S

Figure 6: �S

Lemma 4.2 (Functionality of �S)

i . If C :: �;� `� M * A, then there is a unique term U such that T ::M �S

�! U .

ii . If A :: �;� `� M # A and S :: �;�0 `� S : A > a, then, there is a unique term U such that

T ::M nS
�S

�! U .

Proof.

The proof proceeds by induction on the structure of M , or equivalently on the structure of C and A.
The typing judgments, in particular S, serve the only purpose of preventing considering the case M = hi

in (ii), for which no rule of �S is applicable. 2X

�S translates every term in �!��&> to an object in nil-normal form. Therefore, the range of this
function is the set of well-typed terms in S!��&>

nil
, as depicted in Figure 6, and formally stated below.

Lemma 4.3 (Range of �S)

i . If T ::M �S

�! U , then U is in nil-normal form.

ii. If T ::M nS
�S

�! U and S is in nil-normal form, then U is in nil-normal form.

Proof.

The proof proceeds by induction on the structure of T . 2X

�S is actually a bijection between the set of well-typed terms in �!��&> and the set of well-typed
objects in S!��&>

nil
. We delay proving this property till Section 4.3, when discussing its inverse.

4.2 Soundness of �S with respect to Reduction

We have seen in the previous section that �S is sound with respect to the typing semantics of �!��&>

and S!��&>. We dedicate the present section to proving that it preserves also reductions. This task is
surprisingly complex for a number of reasons.

� Firstly, �-reductions in �!��&> do not correspond to �-reductions in S!��&>, but in general to �-
reductions followed by zero or more nil-reductions. Therefore, most statements below will mention
unexpected of nil-reductions.
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� Secondly, the reduction semantics of S!��&> is specialized to �-long forms. Consider for example
the �!��&> term

M = (�x :a: f x) c d

for appropriate declarations of f , c and d (the latter two of base type). This term is not in �-long
form (its �-expansion is (�x :a: �y :a0: f x y) c d). M reduces to the canonical form

N = f c d

which translation in S!��&> is

V = f � ((c � nil); (d � nil);nil)

On the other hand, �S would translate M to the S!��&> term

U = (�x :a: f � (x � nil);nil) � ((c � nil); (d � nil);nil)

which cannot be reduced further than

(f � (c � nil);nil) � ((d � nil);nil);

a di�erent term from V . V can however be recovered by appending the spines. Such a step proved
compulsory in the implementation of LF as the new programming language Twelf. Indeed, types
left implicit by the user are reconstructed through uni�cation, but since not all typing information
is available at this stage, �-long forms cannot be achieved. Therefore, this preprocessing phase
cannot take advantage of the strong invariants that derive from extensionality. In particular, spines
occasionally need to be appended.

As we can see from this example, �S does not commute with reduction in the general case. We can
track the problem to the fact that, while �-reduction and extensionality are orthogonal concepts
in �!��&>, they are intimately related in S!��&>. Indeed, analyzing the spine calculus in the
absence of extensionality requirements reveals the nil-reduction rule as the degenerated form of a
general �-expansion rule.

However, as long as we are interested only in �-long terms, the de�nitions given in the previous
section ensure the �S is sound with respect to the reduction semantics of our calculi. Therefore,
we need to pay particular attention to operating only on �-long terms. We achieve this purpose
indirectly by requiring explicitly that all the �!��&> terms we consider be well-typed. This is
stricter than needed, but typing is the only way we can enforce extensionality.

Rules lr beta lin and lr beta int generate their reduct means of a meta-level substitution. The
corresponding reduction in S!��&> operate in a similar way. Therefore, we need to show that �S

commutes reasonably well with substitution. This is achieved in the following lemma, where \reasonably
well" means modulo nil-reductions.

Lemma 4.4 (Substitution in �S)

i . Assume that C :: �;� `� M * A, CN :: �;�00 `� N * B and x :B occurs in either � or �.

If T ::M �S

�! U and TN :: N �S

�! V , then T 0 :: [N=x]M �S

�! V 0 where R :: [V=x]U
S
�!�

nil
V 0.

ii . Assume that C :: �;� `� M # A, S :: �;�00 `� S : A > a, CN :: �;�0 `� N * B and x :B
occurs in either �, � or �00.

If T ::M nS �S

�! U and TN :: N �S

�! V , then T 0 :: [N=x]M n [V=x]S �S

�! V 0 where

R :: [V=x]U
S
�!�

nil
V 0.

Proof.

The proof proceeds by induction on the structure of T and then by case distinction on the structure
of CN . All cases are quite simple except for the situation where M is precisely x (subcase of rule �S var

15



in part (ii) of this lemma). We will analyze this situation in detail since a similar proof pattern will
appear again further.

Assume therefore that
T = �S var

x nS
�S

�! x � S

Thus, M = x, U = x � S, B = A, C is either l� lvar, l� ivar, or exposes one of them after traversing
alternations of instances of l� redex and l� atm, and CN :: �;�0 `� N * A.

We make a case distinction on the last rule applied in CN :

Subcase l� atm

Then, A = a0 for some base type a0. By inversion on S, we deduce that a0 = a and S = nil. By
extensionality, we further obtain that N = c, N = y, N = fstN 0, N = sndN 0, N = N 0^N 00 or
N = N 0 N 00.

By inversion on rule �S atm for TN , we have that V = HV � SV and that there is a derivation T 0

of N nnil
�S

�! (HV � SV ), i.e., of [N=x]x n [V=x]nil
�S

�! (HV � SV ). Now simply set R to

Sr beta nil

(HV � SV ) � nil
S
�!nil HV � SV

as a derivation of [V=x](x � nil)
S
�!�

nil
V .

Subcase l� unit

Then, A = >, but no rule can start a derivation of �;�00 `� S : > > a. Therefore, this case cannot
possibly arise.

Other subcases

By inversion, N = hN1; N2i, N = �̂y : A0: N 0 or N = �̂y : A0: N 0. We apply rule �S redex to
TN :: N �S

�! V to obtain a derivation T 0 of N n [V=x]S �S

�! V � [V=x]S, i.e., of
[N=x]x n [V=x]S �S

�! [V=x](x � S). Simply take the identity as R. 2X

We need one more technical result prior to tackling the main theorem of this section. More precisely,
we need to show that, when translating a pre-atomic term, reductions to the accessory spine are mapped
directly to reductions in the resulting S!��&> term, as expressed by the diagram on the right. In
particular, �-reductions are mapped to �-reductions and nil-reductions yield nil-reductions. Notice that
the statement below does not mention typing derivations. Indeed it applies to generic terms, possibly
ill-typed or not in �-long form.

Lemma 4.5 (Spine reduction)

i . If T ::M nS
�S

�! V and R :: S
S
�!� S0, then there is a term

V 0 such that T 0 ::M nS0
�S

�! V 0 and R0 :: V
S
�!� V 0.

ii . If T ::M nS
�S

�! V and R :: S
S
�!nil S0, then there is a term

V 0 such that T 0 ::M nS0 �S

�! V 0 and R0 :: V
S
�!nil V 0.

M n S

M n S0

V

V 0

-�S

?
S

...........-�S

...........?
S

Proof.

This straightforward proof proceeds by induction on the structure of R. 2X

It is easy to show that this result remains valid when considering the transitive and re
exive closure of

the involved relations, or even
S
�!�.

At this point, we are in a position to prove that �S is sound with respect to the reduction semantics
of �!��&> and S!��&>. This property is schematized by the diagram on the right.
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Theorem 4.6 (Soundness of �S for reducibility)

i . Assume that C :: �;� `� M * A.

If R :: M �! N and T :: M �S

�! U , then there are terms

V and V such that R� :: U
S
�!� V , Rnil :: V

S
�!�

nil
V and

T 0 :: N �S

�! V .

M

U

N

V V

-

?
�S

................R

�S

............-S............-
�

...........-S...........-
nil

-

ii . Assume that A :: �;�1 `� M # A and S :: �;�2 `� S : A > a.

If R ::M �! N and T ::M nS
�S

�! U , then there are terms V and V such that

R� :: U
S
�!� V , Rnil :: V

S
�!�

nil
V and T 0 :: N nS

�S

�! V .

Proof.

The proof proceeds by induction on the structure of R and inversion on A, C, T and S. All cases are
straightforward with the exception of the treatment of the �-reduction steps of �!��&> (rules lr beta fst,
lr beta snd, lr beta lin and lr beta int) and rules lr lapp2 and lr iapp2, that require some care.
We develop in full the cases where the last rule applied in R is either lr beta lin or lr lapp2.

Case lr beta lin (i)

Then
R =

(�̂x :A0:M 0)^M 00
�! [M 00=x]M 0

where M = (�̂x :A0:M 0)^M 00 and N = [M 00=x]M 0.

By inversion over C (glossing over possible alternations of rules l� redex and l� atm), we have
that

C =

C1

�;�0; x :A0 `� M 0 * a
l� llam

�;�0 `� �̂x :A0:M 0 * A0�� a
l� redex

�;�0
`� �̂x :A0:M 0

# A0�� a

C2

�;�00 `� M 00 * A0

l� lapp

�;�0;�00 `� (�̂x :A0:M 0)^M 00 # a
l� atm

�;�0;�00
`� (�̂x :A0:M 0)^M 00

* a

Notice in particular that A is an atomic type a, and that the subterm M 0 has precisely this type.

We can similarly invert T obtaining the following partially expanded tree:

T =

T2

M 00 �S

�! U 00

T1

M 0 �S

�! U 0

�S llam

�̂x :A0:M 0 �S

�! �̂x :A0: U 0

�S redex

�̂x :A0:M 0 nU 00 ;̂nil �S

�! (�̂x :A0: U 0) � (U 00 ;̂nil)
�S lapp

(�̂x :A0:M 0)^M 00 nnil
�S

�! (�̂x :A0: U 0) � (U 00 ;̂nil)
�S atm

(�̂x :A0:M 0)^M 00 �S

�! (�̂x :A0: U 0) � (U 00 ;̂nil)

By extensionality relative to C1, M
0 is either a constant, a variable or a destructor applied to some

subterm. Therefore, by inversion on T1, we have that U
0 = H0 � S0 for some head H0 and spine S0.

Now, by de�nition of substitution,

[U 00=x](H0 � S0) = ([U 00=x]H0) � ([U 00=x]S0)
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so that nil-reduction can be applied to ([U 00=x]U 0) �nil. By chaining rules Sr beta lin and Sr nil,
we get

(�̂x :A0: U 0) � (U 00 ;̂nil)
S
�!� ([U 00=x]U 0) � nil

S
�!nil [U 00=x]U 0

By the substitution lemma 4.4 on C1, C2, T1 and T2, we know that there is a term V such that

[M 00=x]M 0 �S

�! V where [U 00=x]U 0 S
�!�

nil
V . It now su�ces to take ([U 00=x]U 0) � nil as V .

Case lr beta lin (ii)

Inversion on A and T yields the fact that U = (�̂x :A0: U 0) � (U 00 ;̂S) for some terms U 0 and U 00,
and derivations

C1 :: �;�
0
1; x :A

0 `� M 0 * A

C2 :: �;�
00
1 `� M 00 * A0

T1 ::M
0 �S

�! U 0

T2 ::M
00 �S

�! U 00

where �1 = �0
1;�

00
1.

By applying the substitution lemma 4.4 on these derivations, there is a term V 0 such that both

[M 00=x]M 0 �S

�! V 0 and [U 00=x]U 0 S
�!�

nil
V 0 are derivable with derivations T 00 and R0, respectively.

At this point we proceed by cases on the structure of T 00 using the same technique already employed
in the proof fragment we showed earlier for the substitution lemma itself.

Subcase l� atm

Then [M 00=x]M 0 is one of c, y, fstN 0, sndN 0, N 0^N 00 or N 0 N 00. By the transitivity lemma2.3
on C1 and C2, there is a derivation of �;�0

1;�
00
1 `� [M 00=x]M 0 * A. By inversion, it must be

the case that A = a, S = nil and U 0 = H0 � S0 for some head H0 and spine S0. Therefore, by
inversion on rule �S atm for T 00 we obtain the desired derivation T 0 of [M 00=x]M 0 nnil

�S

�! V 0.
On the other hand, we can build the following chain of reductions:

(�̂x :A0: U 0) � (U 00 ;̂nil)
S
�!� ([U 00=x]U 0) � nil

S
�!nil [U 00=x]U 0 S

�!�

nil
V 0

Here, we need to take ([U 00=x]U 0) � nil as V and V 0 as V .

Subcase l� unit

This case does not apply.

Other subcases

Then [M 00=x]M 0 has the form hN 0; N 00i, �̂y :A00: N 0 or �̂y :A00: N 0. We can therefore apply rule
�S redex to T 00, obtaining the desired translation T 0 of [M 00=x]M 0 nS

�S

�! V 0 � S. Moreover,
by chaining Sr beta lin to R0 (modulo embedded applications of Sr redex1), we obtained
the required reduction R:

(�̂x :A0: U 0) � (U 00 ;̂S)
S
�!� ([U 00=x]U 0) � S

S
�!nil V 0 � S

In this case, V = V 0 � S and V = ([U 00=x]U 0) � S.

Case lr lapp2

We will focus on proving part (ii) of the theorem. Part (i) combines the technique to be shown
with the reasoning pattern used above.

We have therefore that M = M 0^M 00 and

R =

R1

M 00 �S

�! N 00

lr lapp2

M 0^M 00 �S

�!M 0^N 00

where N = M 0^N 00.
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By inversion on A and T , we obtain that

A =

A1

�;�0
1 `� M 0 # A0��A

C2

�;�00
1 `� M 00 * A0

l� lapp

�;�0

1;�
00

1 `� M 0^M 00 # A

and

T =

T2

M 00 �S

�! U 00

T1

M 0 nU 00 ;̂S �S

�! U
l� lapp

M 0^M 00 nS �S

�! U

By induction hypothesis (i) on R1, C2 and T2, there are terms V 00 and V
00
and derivations R00

� ::

U 00 S
�!� V

00
, R00

nil
:: V

00 S
�!�

nil
V 00 and T 00 :: N 00 �S

�! V 00.

Applying rule Sr lapp1 to R00

� and R00
nil
, we obtain derivations R000

� and R000
nil

of U 00 �S
S
�!� V

00
�S

and V
00
� S

S
�!�

nil
V 00 � S, respectively.

By the spine reduction lemma4.5 on T1 andR
000

� , there is a term V such that T 000 ::M 00 nV
00

�S
�S

�! V

and R� :: U
S
�!� V are derivable. By a further application of the spine reduction lemma on T 000

and R000
nil
, we �nd a term V such that T � :: M 00 nV 00 � S

�S

�! V and Rnil :: V
S
�!�

nil
V are

derivable.

Having the desired terms and reduction derivations, we obtain the required translation derivation
T 0 ::M 0^M 00 nS

�S

�! V by applying rule �S lapp to T 00 and T �. 2X

The postponement lemma allows us to lift this result to the re
exive and transitive closures of the
mentioned reduction relations.

The notion of soundness we adopted relatively to the reduction semantics of our calculi requires that
every reduction in the source language correspond to one (or more) reductions in the target language. We
de�ne completeness dually: every reduction in the target language should correspond to some reduction in
the source language, possibly none. We will give an indirect proof of the completeness of �S with respect
to the reduction semantics of our calculi in Section 4.4, when considering the inverse of our translation.

4.3 S�: A Translation from S
!��&> to �!��&>

In this section and in the next, we consider the problem of translating terms from S!��&> back to
�!��&>, an essential operation to interpret S!��&> objects in the usual notation. �S cannot be used
for this purpose since its codomain is S!��&>

nil
, the subset of S!��&> consisting only of nil-normal

forms. Moreover, it would be impractical even for nil-normal terms since the rules in Figure 5 are not
syntax-directed with respect to the S!��&> objects they mention.

The approach we take is instead to de�ne an independent translation, S�, that maps entities in
S!��&> to terms in �!��&>. We will prove later that it is precisely the inverse of �S, modulo details.
S� is speci�ed by means of the judgments

U S�

�!M U translates to M

S nM S�

�! N S translates to N , given seed M

and de�ned in Figure 7. The notion of spine does not have a proper equivalent in �!��&>: it corresponds
indeed to a term with a hole as its head. Therefore, when translating a spine, we need to supply a head
in order to generate a meaningful �!��&> term. This is achieved by the judgment S nM S�

�! N : the
auxiliary term M (the seed) is initialized to the translation of some head for the spine S (rules S� con,
S� var and S� redex); it is successively used as an accumulator for the translation of the operators
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Terms

S n c
S�

�!M
S� con

c � S
S�

�! M

S nx
S�

�!M
S� var

x � S
S�

�!M

U
S�

�!M 0 S nM 0 S�

�!M
S� redex

U � S
S�

�!M

S� unit

hi
S�

�! hi

U1

S�

�!M1 U2

S�

�!M2

S� pair

hU1; U2i
S�

�! hM1;M2i

U
S�

�!M
S� llam

^�x :A:U S�

�! ^�x :A:M

U
S�

�!M
S� ilam

�x :A:U S�

�! �x :A:M
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Spines

S� nil

nil nM
S�

�!M

S nfstM
S�

�! N
S� fst

�1S nM
S�

�! N

S n sndM
S�

�! N
S� snd

�2S nM
S�

�! N

U
S�

�!M
0

S nM^M
0 S�

�! N
S� lapp

U ;̂S nM
S�

�! N

U
S�

�!M
0

S nM M
0 S�

�! N
S� iapp

U ;S nM
S�

�! N

Figure 7: Translation of S!��&> into �!��&>

appearing in S (rules S� fst, S� snd, S� lapp and S� iapp); when the empty spine is eventually
reached (rule S� nil), the overall translation has been completed and M is returned. As in �S, the use
of an accumulator handles the opposite associativity of S!��&> and �!��&>.

The faithfulness of S� with respect to typing is formally expressed by the following theorem. Again,
we shall stress the fact that the translation process preserves not only types, but also extensionality.

Theorem 4.7 (Soundness of S� for typing)

i . If U :: �;� `� U : A, then Q :: U S�

�!M and C :: �;� `� M * A.

ii . If S :: �;�1 `� S : A > a and A :: �;�2 `� M # A, then Q :: S nM S�

�! N and

U :: �;�1;�2 `� N * a.

Proof.

By simultaneous induction on the structure of U and S. 2X

We dedicate the remainder of this section to proving that S� is the inverse of �S. Besides getting
the comforting formal acknowledgment that our two translations do behave as expected, we will take
advantage of this result to obtain straightforward proofs of the completeness of �S and S� with respect
to typing and reduction.

We begin our endeavor by proving that S� is actually a function from S!��&> to �!��&>. Notice
that the statement of the lemma below does not mention any typing information (compare it with
Lemma 4.2). Indeed, S� operates properly also on aberrant terms such as hi ��1nil, which is mapped to
fst hi (remember that �S was ine�ective on this term). It has S!��&> as a whole as its domain.

Lemma 4.8 (Functionality of S�)

i . For every S!��&> term U , there is a unique �!��&> term M such that U
S�

�!M .

ii . For every spine S and seed M , there is a unique �!��&> term N such that S nM S�

�! N .

Proof.

By induction on the structure of U and S. 2X
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We wish S� to be the inverse of �S. Although this property does not hold in its full strength, it is
\true enough" so that we can take practical advantage of it. The problem is that these two functions
have di�erent domains and ranges. Indeed, not only does �S operate exclusively on well-typed �!��&>

terms, but it produces elements in S!��&>
nil

, a strict subset or S!��&>. On the other hand, S� accepts
arbitrary terms in S!��&>. We bridge these di�erences in the lemma below by insisting on well-typed
terms and relying on nil-reduction.

Lemma 4.9 (Invertibility)

i . Assume that U :: �;� `� U : A.

If Q :: U S�

�!M , then T ::M �S

�! V where R :: U
S
�!�

nil
V .

U

M

V

@
@
@@RS� ...

...
...
...
..�

�S

.........................-S.........................-
nil

-

ii . Assume that S :: �;�1 `� S : A > a and A :: �;�2 `� N # A.

If Q :: S nN S�

�!M and TN :: N nS
�S

�! U , then T ::M �S

�! V where R :: U
S
�!�

nil
V .

Proof.

The proof proceeds by induction on the structure of Q and inversion on the other given derivations.
We rely on the same reasoning pattern already used in the proofs of the substitution lemma for �S
(Lemma 4.4) and in the soundness theorem 4.6. The most complex cases involve rules S� redex and
S� nil and the application rules. 2X

The reverse of this property holds in a much stronger sense: not only no typing information is needed,
but translating a �!��&> term to S!��&> and then back yields the very same original term. We have
the following untyped invertibility lemma.

Lemma 4.10 (Untyped invertibility)

i . If T ::M �S

�! U , then Q :: U S�

�!M .

ii . If T ::M nS
�S

�! V and QS :: S nM S�

�! N , then Q :: V S�

�! N .

Proof.

By inversion on the structure of T . 2X

The untyped invertibility lemma states that composing S� with �S transforms a �!��&> term to
itself; therefore it corresponds to the identity function on �!��&>. On the other hand, the invertibility
lemma 4.9 states that S� is the left inverse of �S on well-typed S!��&>

nil
terms. On the basis of this

observation and of previously proved properties, we easily deduce that they form a pair of inverse functions
between the well-typed fragments of �!��&> and S!��&>

nil
.

Corollary 4.11 (Bijectivity)

�S and S� are bijections between the set of well-typed �!��&> terms and the set of well-typed S!��&>
nil

terms. Moreover, they are each other's inverse.

Proof.

It is an easy exercise in abstract algebra to show that, given two functions f : X ! Y and g : Y ! X,
if f � g = IdY and g � f = IdX , then f and g are bijections and moreover g = f�1.

By Lemmas 4.2, 4.3 and theorem 4.1, we know that �S is a function from the well-typed portion of
�!��&> to the well-typed subset of S!��&>

nil
. By the functionality lemma 4.8, S� maps S!��&> terms to

�!��&> objects; in particular, by typing soundness, it associates well-typed nil-normal S!��&> terms
to well-typed �!��&> terms. Moreover, since terms that are already nil-normal cannot be further nil-
reduced, the invertibility lemma states that S� is the left inverse of �S on well-typed S!��&>

nil
terms.

Finally, by the untyped invertibility lemma, �S is the left inverse of S� on �!��&>, and in particular on
its well-typed fragment.
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S!��&> �!��&>

S�

Figure 8: S�

On the basis of these hypotheses, the previous algebraic observation allows us to conclude that �S
and S� are indeed bijections between well-typed objects in �!��&> and well-typed terms in S!��&>

nil
,

and that they are one another's inverse. 2X

This property opens the door to easy proofs of the completeness direction of every soundness theorem
so painfully achieved so far. We �rst consider the completeness of �S with respect to typing. In this and
other results below, we do not need to present any auxiliary part related to pre-atomic terms.

Corollary 4.12 (Completeness of �S for typing)

If M �S

�! U and �;� `� U : A, then �;� `� M * A.

Proof.

By the untyped invertibility lemma, U S�

�! M . Then, the soundness of S� for typing yields a
derivation of �;� `� M * A. 2X

An implementation that relies on S!��&> as its internal representation of �!��&> terms would translate
these terms as it parses them and only then check that they are well typed. The novel Twelf implementa-
tion of LF [HHP93] takes precisely these steps. The above corollary decrees that this way of proceeding
is correct since if �S produces a well-typed term, then the original �!��&> object is well-typed.

In a similar fashion, we prove the completeness of S� with respect to typing.

Corollary 4.13 (Completeness of S� for typing)

If U S�

�!M and �;� `� M * A, then �;� `� U : A.

Proof.

By the invertibility lemma, M �S

�! V where U
S
�!�

nil
V . By the soundness of �S for typing, we

obtain that �;� `� V : A. Finally, since nil-expansion preserves typing (Lemma 3.3), we have that
�;� `� U : A. 2X

4.4 Soundness of S� with respect to Reduction

We will now analyze the interaction between S� as a translation from S!��&> and �!��&>, and the
notion of reduction inherent to these two languages. The main results of our investigation will be that
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S� preserves �-reductions, but identi�es nil-convertible terms. We will also take advantage of the fact
that this translation is the inverse of �S to prove the completeness counterpart of these statements.

It will be convenient to start by getting a deeper understanding of how nil-reducibility relates to S�.

Consider the equivalence relation
S
�nil induced by the nil-reduction congruence

S
�!nil. Its equivalence

classes consist of all the terms of S!��&> that nil-reduce to the same nil-normal form. S� uniformly
maps every object in such an equivalence class to the same �!��&> term, as depicted in Figure 8. In
order to prove this fact, we �rst show that nil-reducing a term does not a�ect its translation.

Lemma 4.14 (Invariance of S� under nil-reduction)

i . If R :: U
S
�!nil U 0 and Q :: U S�

�!M , then Q0 :: U 0 S�

�!M .

ii . If R :: S
S
�!nil S0 and Q :: S nN S�

�!M , then Q0 :: S0 nN S�

�!M .

U

M

U 0

@
@
@@RS�

-S -
nil ..............	S�

Proof.

By induction on the structure of R. 2X

This lemma can also be interpreted as stating that S� is sound with respect to nil-reducibility. Therefore,
in the following discussion, we will concentrate on the interaction between this translation and the proper
�-reductions of S!��&>.

The converse of the above property holds also: S� maps a term and all of its nil-expansions to the
same �!��&> object. This is formally stated as follows.

Lemma 4.15 (Invariance of S� under nil-expansion)

i . If R :: U
S
�!nil U 0 and Q0 :: U 0 S�

�!M , then Q :: U S�

�!M .

ii . If R :: S
S
�!nil S0 and Q0 :: S0 nN S�

�!M , then Q :: S nN S�

�!M .

U

M

U 0

�
�
��	S�

-S -
nil..............RS�

Proof.

By induction on the structure of R. 2X

Strong nil-normalization (Lemma 3.7) enables to easily shift these properties to the re
exive and

transitive closure of
S
�!nil, and to the corresponding equivalence relation.

The nil-invariance properties we just achieved together with the discovery in the previous section that
�S and S� are weakly bijective account for a simple proof of the completeness of the latter translation
with respect to the reduction semantics of the involved calculi.

Corollary 4.16 (Completeness of S� for reduction)

Assume that �;� `� U : A.

If U
S�

�!M and M �! N , then there is a term V such that U
S
�!� V

and V
S�

�! N .

U

M

V

N
?

S�

-

...........?
S�

............-S............-
�

Proof.

By the invertibility lemma 4.9, there is a nil-normal term U 0 such that M �S

�! U 0 and U
S
�!�

nil
U 0

are derivable. By the soundness of �S with respect to reduction, there are terms V
0
and V 0 such that

U 0 S
�!� V

0 S
�!�

nil
V 0 and N

�S

�! V 0:

By virtue of Lemma 3.9, we can postpone the nil-reductions that lead from U to U 0, obtaining a term
V such that

U
S
�!� V

S
�!�

nil
V 0
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On the other hand, by untyped invertibility, there is a derivation of V 0 S�

�! N . At this point, an iterated
use of the invariance of S� under nil-expansion (Lemma 4.15) allows us to obtain the desired derivation
of V S�

�! N . 2X

We conclude this section by showing that S� is sound with respect to the reduction semantics of
S!��&>. The above invariance lemmas capture this property in the case of nil-reduction. Therefore, we
focus the discussion on �-reductions.

The required steps in order to achieve this result are reminiscent of the path we followed when proving
the analogous statement for �S. There are however three important di�erences. First, the proofs are
much simpler in the present case. Second, the statements below do not need to mention any typing
information. Third, nil-reductions do not appear in these statements. This overall simpli�cation derives
from the fact that, because of the presence of nil-reduction, S!��&> has more structure than �!��&>.
Therefore, while �S needed to extract the additional information from a typing derivation, S� can simply
forget about the extra structure of the S!��&> terms it acts upon.

The �rst step towards the soundness of S� with respect to (�-)reduction is given by the following
substitution lemma, needed to cope with functional objects, both linear and intuitionistic.

Lemma 4.17 (Substitution in S�)

i . If Q :: U S�

�!M and QV :: V S�

�! N , then Q0 :: [V=x]U S�

�! [N=x]M .

ii . If Q :: S nM S�

�!M 0 and QV :: V S�

�! N , then Q0 :: [V=x]S n [N=x]M S�

�! [N=x]M 0.

Proof.

By induction on the structure of Q. 2X

In order to handle the translation rules for the two forms of application of S!��&>, we need the
following technical result, akin to the spine reduction lemma presented in Section 4.2.

Lemma 4.18 (Seed reduction)

If Q :: S nM S�

�! N and R :: M �! M 0, then there is a term

N 0 such that Q0 :: S nM 0 S�

�! N 0 and R0 :: N �! N 0.

Proof.

By induction on the structure of Q. 2X

S nM N

S nM 0 N 0

-S�

?
..........-S�

...........?

Finally, we have the following soundness theorem, that states that S� preserves �-reduction.

Theorem 4.19 (Soundness of S� for �-reducibility)

i . If R :: U
S
�!� U 0 and Q :: U

S�

�! M , then there is a term M 0 such

that R0 ::M �! M 0 and Q0 :: U 0 S�

�!M 0.

ii . If R :: S
S
�!� S0 and Q :: S nN S�

�!M , then there is a term M 0 such

that R0 ::M �! M 0 and Q0 :: S0 nN
S�

�!M 0.

U U 0

M M 0

-S -
�

?
S�

..........-

...........?
S�

Proof.

By induction on the structure of R. 2X

We can summarize the previous theorem, stating the soundness of S� for �-reducibility, and the in-
variance lemma 4.14, expressing the soundness of S� for nil-reducibility in a single statement mentioning
the generic notion of reduction of S!��&>.
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Corollary 4.20 (Soundness of S� for reducibility)

If U
S
�! V and U

S�

�!M , then there is a term N such that M �!� N

and V
S�

�! N .

Proof.

Depending on whether
S
�! is

S
�!nil or

S
�!�, this statement corresponds

to Lemma 4.14 or to theorem 4.19, respectively. In the former case, N = M

and �!� is instantiated to the identity. 2X

U V

M N

-S

?
S�

...........--

...........?
S�

Clearly, the above result holds also relatively to the re
exive and transitive closure of
S
�!.

The previous theorem, together with the fact that S� and �S form a pair of inverse functions, allows
us to achieve a simple proof of the completeness of �S with respect to the reduction semantics of S!��&>.
Notice that this corollary mentions both �- and nil-reductions.

Corollary 4.21 (Completeness of �S for reduction)

Assume that �;� `� M : A.

If M
�S

�! U and U
S
�!� V

S
�!�

nil
V with V in nil-normal form,

then there is a term N such that M �! N and N
�S

�! V .

M

U

N

V V
?

�S

-S -
�

-S -
nil

-

...........-
................R

�S

Proof.

By the untyped invertibility lemma 4.10, there is a derivation of U S�

�! M . By the soundness of S�
with respect to �-reduction, there is a term N such that M �! N and V

S�

�! N . By the invariance
of S� under nil-reduction, there is a derivation of V S�

�! N . By composing various typing soundness
results, we obtain that �;� `� V : A, so that we can apply the invertibility lemma, obtaining that
N �S

�! V is derivable. 2X

5 Properties of S
!��&>

We will now present the main properties of S!��&>, ultimately strong normalization and the uniqueness
of normal forms. In order to do so, we will take advantage of the facts that similar results hold for �!��&>,
and that we have reasonably well-behaved translations to and from this calculus. An alternative would

have been to give direct proofs of these properties.

We begin by showing that S!��&> admits con
uence and the Church-Rosser property. Di�erently
from �!��&>, the statement of this properties must include typing assumptions in order to express

certain extensionality requirements. For typographic reasons, we model the equivalence relation
S
� with

a double arrow.

Theorem 5.1 (Church-Rosser)

Con
uence: Assume that U :: �;� `� U : A.

If R0 :: U
S
�!� U 0 and R00 :: U

S
�!� U 00, then there is a term

V such that R� :: U 0 S
�!� V and R�� :: U 00 S

�!� V .

Similarly for spines

U

U 0 U 00

V

@
@R
S

R
�
�	
S

	

.........	
S	

.........R
SR

Church-Rosser: Assume that U 0 :: �;� `� U 0 : A and U 00 :: �;� `� U 00 : A.

If R :: U 0
S
� U 00, then there is a term V such that

R� :: U 0 S
�!� V and R�� :: U 00 S

�!� V .

Similarly for spines

U 0 U 00

V

-S�
.........	

S	

.........R
SR
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Proof.

We will carry out the proof in the case of con
uence only. The Church-Rosser property is handled
similarly.

Since, by Lemma 4.8, S� is a total function over S!��&>, there is a unique term M such that
U S�

�!M is derivable. By typing soundness, we obtain that �;� `� M * A. By iterated applications of
the soundness of S� over reduction, we deduce that there are terms M 0 and M 00 such that M �!� M 0

and U 0 S�

�! M 0, and similarly M �!� M 00 and U 00 S�

�! M 00. By subject reduction, we have that
�;� `� M 0 * A and �;� `� M 00 * A. By the con
uence property of �!��&>, we know that there
exists a term N such that M 0 �!� N and M 00 �!� N are derivable.

By the invertibility lemma, there are S!��&> terms U� and U�� such thatM 0 �S

�! U� with U 0 S
�!�

nil
U�

and M 00 �S

�! U�� with U 00 S
�!�

nil
U��. By the soundness of �S with respect to reductions, there are terms

V 0 and V 00 such that U� S
�!� V 0 and N �S

�! V 0, and similarly U�� S
�!� V 00 and N �S

�! V 00. However,
since �S is a function, V 0 = V 00; let us call this term V . By composing the various reductions above, we

obtain the desired derivations of U 0 S
�!� V and U 00 S

�!� V . 2X

Next, we consider the S!��&> equivalent of the transitivity lemma 2.3 discussed in Section 2. As in
�!��&>, we must distinguish the linear and the intuitionistic cases, but we have no convenient notation
that spans uniformly over terms and spines. Therefore, the lemma below has four parts.

Lemma 5.2 (Transitivity)

i . If U :: �;�; x :B `� U : A and UV :: �;�0 `� V : B, then U 0 :: �;�;�0 `� [V=x]U : A.

ii . If S :: �;�; x :B `� S : A > a and UV :: �;�0 `� V : B, then S0 :: �;�;�0 `� [V=x]S : A > a.

iii . If U :: �; x :B;� `� U : A and UV :: �; � `� V : B, then U 0 :: �;� `� [V=x]U : A.

iv. If S :: �; x :B;� `� S : A > a and UV :: �; � `� V : B, then U 0 :: �;� `� [V=x]S : A > a.

Proof.

We prove this lemma by means of a technique similar to the one we just sketched in the case of the
Church-Rosser property. We illustrate the manner spines are handled by presenting the full treatment of
case (ii). The treatment of the other parts is similar or simpler.

Let z be a variable that does not appear in neither �, �, nor �0, and that is di�erent from x. We will
use it as a generic head for S. By rule l� lvar, there is a (trivial) typing derivation of �; z :A `� z # A.
On the basis of this fact, by the soundness of S� for typing (Theorem 4.7), there is a term M such
that S n z S�

�! M and �;�; x : B; z : A `� M * a are derivable. By the same theorem, there is a
term N and derivations of V S�

�! N and �;�0 `� N * B. By the transitivity lemma 2.3 for �!��&>,
�;�;�0; z :A `� [N=x]M * a is derivable.

By rule �S var, there is a derivation of z nS �S

�! z �S. By the invertibility lemma 4.9, there is a term

U 0 and derivations of M �S

�! U 0 and z � S
S
�!�

nil
U 0. By inversion on the reduction rules for S!��&>,

U 0 = z � S0 for some spine S0. Therefore, by rule Sr var, there must be a derivation of S
S
�!�

nil
S0.

Again by the invertibility lemma 4.9, there is a term V 0 and a derivation N
�S

�! V 0, where V
S
�!�

nil
V 0

is derivable. By the substitution lemma 4.4, there is a term V and derivations of [N=x]M
�S

�! V and

z � ([V 0=x]S0)
S
�!�

nil
V (remember that x 6= z). Again by invertibility on the reduction rules for S!��&>,

V = z �S for some spine S, and [V 0=x]S0
S
�!�

nil
S. By iterated applications of the substitution lemma 3.8,

there is a derivation of [V=x]S
S
�!�

nil
S.

By the soundness of �S with respect to typing, �;�;�0; z :A `� z � S : a is derivable. By inversion
on rule lS lvar, �;�;�0 `� S : A > a is derivable as well. Now, since nil-expansion preserves typing,
there is a derivation of �;�;�0 `� [V=x]S : A > a. 2X

The next property we are interested in proving for S!��&> is subject reduction. Again, we must
deal separately with terms and with spines. Remember that we have already proved this property in the
subcase of nil-reduction.
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Lemma 5.3 (Subject reduction)

i . If U :: �;� `� U : A and Q :: U
S
�! V , then U 0 :: �;� `� V : A.

ii . If S :: �;� `� S : A > a and Q :: S
S
�! S0, then S0 :: �;� `� S0 : A > a.

Proof.

We will prove only part (i) of this statement. Part (ii) adapts the technique we just applied in the
transitivity lemma.

By the soundness of S� with respect to typing, there are a term M and derivations of U S�

�!M and
�;� `� M * A. By the soundness of S� with respect to reductions, there are a term N and derivations
of V S�

�! N and M �!� N . By the subject reduction property of �!��&>, �;� `� N * A is derivable.

Now, by the soundness of �S with respect to typing, there is a term V 0 such that �;� `� V 0 : A and
N �S

�! V 0 are derivable. On the other hand, by the invertibility lemma 4.9, there is a term V 00 such that

N
�S

�! V 00 and V
S
�!�

nil
V 00 are derivable. However, since, by Lemma 4.2, �S is a function, we have that

V 0 = V 00. Then, in order to conclude this proof, we simply take advantage of the fact that nil-expansion
preserves typing (Lemma 3.3) to obtain the desired derivation of �;� `� V : A. 2X

We now tackle strong normalization which, as in the case of �!��&>, states that no in�nite chain
of (either nil- or �-) reductions can start from a well-typed S!��&> term. Therefore, we can reduce a
well-typed term to normal (actually canonical) form by exhaustively reducing randomly selected redices.

Theorem 5.4 (Strong normalization)

i . If U :: �;� `� U : A, then U is strongly normalizing.

ii. If S :: �;� `� S : A > a, then S is strongly normalizing.

Proof.

We will prove only part (i) of this theorem. Part (ii) is handled similarly.

Assume we have a (possibly in�nite) sequence of terms U0; U1; U2; : : : such that U = U0 and there are
derivations for the following reductions:

� = U0
S
�! U1

S
�! U2

S
�! : : :

By the soundness of S� with respect to reducibility, every �-reduction in � corresponds to a reduction in
�!��&> (Theorems 4.19) while every nil-reduction disappears (Lemma 4.14). This entails that there is a
sequence of �!��&> termM0;M1;M2; : : : such that on the one hand there are derivations of Ui

S�

�!M'(i)

where ' maps maximal subsequences of � linked by nil-reductions to the same �!��&> term, and on
the other hand the following reduction sequence is derivable

�0 = M0 �! M1 �! M2 �! : : :

Notice in particular that there is a derivation of U S�

�! M0. Therefore, by the soundness of S� with
respect to typing, the judgment �;� `� M0 * A is derivable. By the strong normalization theorem
for �!��&>, �0 is �nite. Then, also � must be �nite since, by the strong normalization of nil-reduction
(Lemma 3.7), the maximal subsequences of nil-reducts collapsed by ' are �nite. 2X

Strong normalization ensures that exhaustive reductions of a well-typed S!��&> term (or spine) will
eventually produce an object in normal form. Depending on which redex is selected at each step, this
procedure might yield di�erent normal objects. The uniqueness corollary below guarantees that every
reduction path will lead to the same normal term (or spine), up to the renaming of bound variables.

Corollary 5.5 (Uniqueness of normal forms)

i . If U :: �;� `� U : A, then there is a unique normal term V such that Q0 :: U �!� V .
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ii . If S :: �;� `� S : A > a, then there is a unique normal spine S0 such that Q0 :: S �!� S0.

Proof.

By the strong normalization theorem, we know that every sequence of reductions starting at U leads
to a term in normal form. Let consider two reduction sequences validating U �!� V 0 and U �!� V 00,
for terms V 0 and V 00 in normal form. By con
uence, there is a term V to which both reduce. However,
since V 0 and V 00 do not contain redices, the only way to close the diamond is to have that V 0 = V 00 = V ,
and use the identical reduction.

We proceed similarly in order to prove the second part of this statement. 2X

As in the case of �!��&>, the above results entitle speaking about the normal form (or equivalently
the canonical form) of a term U or a spine S, whenever these objects are well-typed. We denote this
term and spine Can(U ) and Can(S), respectively. A calculus that accepts only canonical objects can be
obtained from the typing system displayed in Figure 3 by simply removing rule lS redex.

A term (spine) in which redices appear at most in the argument of an application is said to be in
weak head-normal form. Any well-typed term can be converted to weak-head normal form by repeatedly
selecting a redex that violates this property and reducing it. A similar property holds for spines. We
use U and S to denote the weak-head normal form of a term U and a spine S, respectively. Weak
head-normalization is not as computationally expensive as full normalization since it operates on shallow
redices only. However, it exposes enough of a normal form to work comfortably in many circumstances.
Therefore, the implementation of procedures that, by their very nature, need to perform reductions,
uni�cation for example, often rely on weak head-normalization rather than on full normalization.

6 Further Remarks

In this section, we brie
y report on important relationships between our spine calculus and other formal
systems in the literature. More precisely, we hint at an alternative development of the results obtained
in this paper (Section 6.1), point at a relationship between the spine calculus and the logic programming
notion of uniform derivability (Section 6.2), and discuss related work (Section 6.3).

6.1 Alternative Development

We observed that the spine calculus S!��&> has more structure than the corresponding traditional
formulation, as manifested by the presence of the nil-reduction rule, which has no equivalent in �!��&>.
When analyzing the translation function �S, we had to recover this additional structure by accompanying
most statements with �!��&> typing derivations. This step was over-restrictive, but acceptable because
of our interest in well-typed terms only.

We can achieve a better correspondence by enriching the syntax of �!��&> with the two new operators
ac and ca. Let us call the enriched language �!��&>

ac . We use these new constructs to annotate the
coercion rules l� atm and l� redex, which become:

�;� `� M # a
l� atm

�;� `� acM * a

�;� `� M * A
l� redex

�;� `� caM # A

Notice that every typing derivation �;� `� M *# A can now be uniquely reconstructed on the basis
of the term M , except for the composition of the context �;� (in particular, the manner � is split in
certain applications of multiplicative rules).

We augment the reduction semantics of �!��&> with the rule

�ac : ca (acM ) �! M

which corresponds to eliminating alternations of rules l� atm and l� redex. We call the expression on
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the left-hand side of the arrow a coercion redex. The other reduction rules are upgraded as follows:

fst (ca hM;N i) �! M

snd (ca hM;N i) �! N

(ca (�̂x :A:M )) N̂ �! [N=x]M
(ca (�x :A:M ))N �! [N=x]M

Then, the absence of any occurrence of ca in a well-typed term implies that a term does not contain
redices, and therefore that it is in normal form.

We modify the translation rules �S atm and �S redex as follows:

M nnil
�S

�! H � S
�S atm

acM
�S

�! H � S

M
�S

�! U
�S redex

caM nS
�S

�! U � S

Notice the absence of side-conditions. On the basis of these upgraded de�nitions, it is easy to see that
�S maps coercion redices to nil redices, and therefore applications of the new reduction rule �ac are
emulated in S!��&> by nil-reductions.

Rules S� con, S� var and S� redex of S� are modi�ed as follows:

S n c S�

�!M
S� con

c � S
S�

�! acM

S nx S�

�!M
S� var

x � S
S�

�! acM

U S�

�!M 0 S ncaM 0 S�

�!M
S� redex

U � S
S�

�! acM

The new and improved S� translates nil-redices to coercion redices and puts nil-reductions and �ac in
one-to-one correspondence. As we suggested, this treatment eliminates the mismatch between �!��&>

and S!��&> that led to many of the complications in Section 4.

Using �!��&>
ac as an external language is impractical for most applications. Indeed, a more reasonable

approach is to give the user the simpler �!��&> and have coercions �lled in during parsing; this is
essentially what �S did in the previous sections. Coercions need to be inserted at every alternation of
constructors and destructors in a term. Notice that the resulting object does not contain coercion redices
but, similarly to nil-redices, they may be exposed by the application of �-reductions. Further 
exibility
can be achieved by relieving the user from the requirement of writing terms in �-long form only: subterms
can be expanded as soon as their type has been inferred as a result of type checking.

6.2 Relationship to Uniform Provability

An abstract logic programming language [MNPS91] is a fragment of a logic such that every derivable se-
quent has a uniform derivation. An intuitionistic cut-free sequent derivation is uniform if it is constructed
in the following way, from the bottom up: right introduction rules are applied until the formula on the
right-hand side of the sequent (the goal formula) is atomic, then a formula on the left-hand side (the
program) of the sequent is selected (the focus or stoup) and left introduction rules are applied to it until
the same atomic formula is exposed, possibly spawning subgoals that are to have uniform proofs.

The fragment of linear logic obtained by considering the types of �!��&> and S!��&> as logic
formulas is known as the language of (propositional) linear hereditary Harrop formulas [HM94, Cer96].
We denoted it ILL!��&> in Section 2. This formalism is an abstract logic programming language and
a uniform proof system for it, adapted from [Cer96], is reported in Figure 9. The uniform provability
judgment

�;�
u
�! A

is subject to the application of the right introduction rules of a sequent calculus presentation of ILL!��&>.
When an atomic formula a is exposed (rules u lin and u int), a program formulaA is selected and isolated
in the central part of the immediate entailment judgment

�;�
u
�! A � a

and left introduction rules are applied to it.
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Uniform provability

�;�
u
�! A � a

u lin

�;�;A
u
�! a

�;A;�
u
�! A � a

u int

�;A;�
u
�! a

u top

�;�
u
�! >

�;�
u
�! A1 �;�

u
�! A2

u with

�;�
u
�! A1&A2

�;�; A
u
�! B

u lolli

�;�
u
�! A��B

�;A;�
u
�! B

u imp

�;�
u
�! A! B

Immediate entailment

i atm

�; �
u
�! a � a

(No rule for >)
�;�

u
�! A1 � a

i with1

�;�
u
�! A1&A2 � a

�;�
u
�! A2 � a

i with2

�;�
u
�! A1&A2 � a

�;�0 u
�! B � a �;�00 u

�! A
i lolli

�;�0

;�00 u
�! A��B � a

�;�
u
�! B � a �; �

u
�! A

i imp

�;�
u
�! A! B � a

Figure 9: Uniform Derivability

There is a striking correspondence between the proof system displayed in Figure 9 and the typing
inference system for S!��&> given in Figure 1. Indeed, deleting every trace of terms from the typing
rules of our spine calculus yields precisely the above derivability rules for ILL!��&>, except for rules
lS con and lS redex that do not have any match. A uniform provability equivalent of rule lS con can
be obtained by partitioning the left-hand side of a sequent into an intuitionistic program, corresponding
to the concept of signature, and a collection of dynamic assumptions, corresponding to the notion of
context in S!��&>. If we ignore the terms in rule lS redex, we recognize an analogue of the cut rule.
Clearly, since uniform derivations are cut-free, the system in Figure 9 is not supposed to contain such an
inference �gure.

The similarity between the inference rules of uniform provability and the typing rules of S!��&>

indicates that our spine calculus is a natural term assignment system for uniform derivations. This sets
the basis for a form of the Curry-Howard isomorphism [How69] between normal, well-typed S!��&>

terms and valid uniform derivations in ILL!��&>.

6.3 Related Work

The uniform derivation system given in Figure 9 is a presentation of the sequent calculus for ILL!��&>

that embeds restrictions on the applicability of inference rules. The strong relationship between intuition-
istic fragment of sequent calculi (not necessarily linear) and term languages akin to our spine calculus has
been already noticed in the literature. A �rst indirect reference appears in the seminal work of Howard
on the types-as-formulas correspondence [How69], although a formal spine-like calculus is not de�ned.

In [Her95], Herbelin presents a systematic account of the relationship between the system LJT and
the term language ��, which extends the �! restriction of our spine calculus with a spine concatenation
operator and explicit substitutions. LJT is a slightly massaged variant of the implicational fragment of
Gentzen's intuitionistic sequent calculus with ideas similar to the uniform provability system from the
previous section: in particular the left-hand side of a sequent contains a stoup and left rules are restricted
to operate only to the formula currently on focus. Since no extensionality requirement is made on �� terms,
the calculus relies on concatenation to append fragmented spines. The presence of explicit substitutions
provides a direct handling of the two cut-rules of this calculus. �� is de�ned for foundational reasons,
as the target �-calculus of a derivations-as-terms correspondence for LJT . Indeed, its reduction rules
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correspond to the steps in a cut-elimination procedure for LJT, so that strong normalization theorem for
�� subsumes the cut-elimination property for this logic.

Schwichtenberg [Sch97] adopts a similar approach relatively to a richer logic consisting of implication,
conjunction and universal quanti�cation. He starts from a more traditional presentation of the sequent
calculus. In particular the absence of a stoup forces him to consider permutative conversions. The
term calculus he proposes di�ers from Herbelin's by the absence of explicit concatenation operators and
substitutions. It is therefore more similar to our spine calculus.

Barendregt [Bar80] relies on an term language akin to our spine calculus to study the notion of
normalization in the untyped �-calculus. Terms in this language are called B�ohm trees.

7 Conclusion and Future Work

In this paper, we have formalized an alternative presentation of the linear �-calculus �!��&> which we be-
lieve can be used to improve the e�ciency of critical procedures such as uni�cation in the implementation
of languages based on (linear) �-calculi. The resulting language, the spine calculus S!��&>, strengthens
the natural adaptation of the notion of abstract B�ohm tree [Bar80, Her95] to encompass extensional
products (&), a unit type (>) and linearity (��), with the further requirement that well-typed terms be
in �-long form. S!��&> terms of base type are structured similarly to the objects found in �rst-order
term languages. In particular, their head is immediately available, an important bene�t for procedures
such as uni�cation that base a number of choices on the nature of the heads of the terms they operate
upon. Having extensionality built-in permits avoiding the overhead, both in terms of bookkeeping and
execution time, of performing �-conversions at run time.

The intended applications of this work lie in proof search, logic programming, and the implementation
of logical frameworks based on linear type theories. In particular, the spine calculus S!��&> has been
designed as a �rst approximation of an internal representation for the type theory ����&> underlying the
linear logical framework LLF [Cer96, CP96]. An extension to the full language, which includes dependent
types, does not appear to be problematic. The adoption of a spine calculus as an internal representation
device appears to integrate well with the simultaneous use of explicit substitutions [ACCL91]. However,
the details of the amalgamation of these two techniques in the presence of linearity still need to be worked
out.

A variant of the spine calculus deprived of linear constructs, but featuring dependent types and
explicit substitutions is currently tested in a new implementation of the linear framework LF [HHP93] as
a higher-order constraint logic programming language. This system, called Twelf, is expected to supersede
the Elf implementation of LF currently in use [Pfe91, Pfe94]. It will be available later this year.
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